Главная / Теория термической обработки металлов / Старение и отпуск / Старение / Искусственное старение

Искусственное старение

В зависимости от режима, структурных изменений и получаемого комплекса свойств искусственное старение можно подразделить на полное, неполное, перестаривание и стабилизирующее старение (соответствующие режимы и свойства приведены в таблице Режимы старения и механические свойства состаренных сплавов на разной основе для литейного алюминиевого сплава AЛ9).

Полное искусственное старение проводят при такой температуре и продолжительности, которые обеспечивают достижение максимальной прочности.

Неполное искусственное старение — это старение с более короткой выдержкой или при более низкой температуре, чем полное с целью повысить прочность при сохранении достаточной пластичности. Режимы неполного старения соответствуют восходящим ветвям кривых на рисунках Схема зависимости прочностных свойств и Схема зависимости прочности от температуры старения. Некоторая потеря возможного прироста прочности компенсируется меньшим снижением пластичности.

Перестаривание — это старение при более высокой температуре или большей выдержке, чем полное, с целью получить сочетание повышенных прочности, пластичности, коррозионной стойкости, электропроводности и других свойств. Режимы перестаривания соответствуют нисходящим ветвям кривых на рисунках Схема зависимости прочностных свойств и Схема зависимости прочности от температуры старения.

По сравнению с неполным старением перестаривание при той же прочности обеспечивает большую степень распада твердого раствора и коагуляцию выделений, что часто позволяет достигнуть требуемого комплекса разнообразных свойств.

Стабилизирующее старение — это разновидность перестаривания, целью которого является стабилизация свойств и размеров изделия.

Жаропрочные сплавы, предназначенные для длительной службы, обычно подвергают старению при температуре выше рабочей. В противном случае при эксплуатации изделия в нем будут активно протекать структурные изменения, приводящие к разупрочнению и нестабильности свойств изделия. Очень часто термическую обработку жаропрочных сплавов проводят в режиме перестаривания.

Выбор режима старения следует проводить с учетом условий закалки.
С повышением температуры нагрева под закалку из однофазной области (выше Т0 в сплаве С0 на рисунке Схема к объяснению закалки без полиморфного превращения) старение ускоряется из-за повышения концентрации закалочных вакансий, которая входит в предэкспоненциальный множитель А в выражении для скорости зарождения новой фазы.

Таким образом, С-кривые распада раствора на рисунке С-кривые образования зон ГП с повышением температуры закалки сдвигаются влево, причем этот сдвиг больше в низкотемпературной области, где роль закалочных вакансий особенно велика.

Некоторые сплавы подвергают старению без специального нагрева под закалку. В таких случаях пересыщение раствора достигается ускоренным охлаждением с температуры конца затвердевания отливки или горячей обработки давлением.

Упрочнение здесь не достигает максимально возможного для данного сплава из-за меньшей пересыщенности твердого раствора, но экономическая эффективность (исключение операции закалки) делает указанное старение целесообразным для ряда деталей. Для отдельных сплавов, например для сплава MЛ12 системы Mg — Zn — Zr, старение отливок без специального нагрева под закалку является основным способом термической обработки.

Скорость охлаждения после старения не влияет на свойства сплава.
Обычно с температуры старения изделия охлаждают на воздухе.

«Теория термической обработки металлов»,
И.И.Новиков