Основные компоненты чугуна — железо, углерод и кремний. Кроме того, обычные чугуны содержат марганец, фосфор и другие элементы. Несмотря на сложность химического состава чугуна, важнейшие структурные изменения при его отжиге качественно можно проанализировать с использованием диаграммы состояния двойной системы Fe — С.
В этой системе, как известно, аустенит и феррит могут находиться в стабильном равновесии с графитом (пунктирные линии на рисунке Диаграмма состояния Fe — С) и в метастабильном равновесии с цементитом (сплошные линии).
Графит по сравнению с цементитом труднее зарождается и труднее растет в металлической матрице. Для зарождения графита требуются гораздо большие флуктуации концентрации, так как графит — это практически 1100% С (растворимость железа в нем ничтожна), а цементит содержит только 6,67% С.
При росте графитного кристалла необходимо почти полное удаление атомов железа от фронта продвижения его границы в металлической матрице. Поэтому образование метастабильного цементита в определенных условиях, например при ускоренном охлаждении, кинетически более выгодно, чем образование стабильного графита.
Однако метастабильное равновесие аустенита или феррита с цементитом соответствует относительному минимуму свободной энергии, а стабильное равновесие с графитом — абсолютному минимуму свободной энергии. Поэтому выдержка чугуна при повышенных температурах должна в конце концов привести к замене цементита графитом.
Кремний, никель, алюминий и другие элементы способствуют графитизации, а марганец, хром, ванадий, магний, церий, сера и другие элементы затрудняют ее.
Фазовые превращения при термической обработке чугунов включают все те основные процессы, которые встречаются в сталях, и дополнительно осложнены процессами, связанными с поведением графитной фазы.
Выдающийся вклад в изучение фазовых превращений в чугунах, в частности графитизации, внесли работы школы К. П. Бунина. В данной главе анализ процессов отжига чугунов базируется главным образом на обобщениях и результатах работ этой школы.
Основные разновидности отжига 2-го рода чугунов — графитизирующий отжиг и нормализация.
«Теория термической обработки металлов»,
И.И.Новиков
В тонких сечениях отливок из серого чугуна и высокопрочного чугуна с шаровидным графитом из-за ускоренного охлаждения кристаллизуется ледебурит, т. е. чугун получается белым. При литье в кокиль вся поверхность может…
Упрочняющая термическая обработка серого чугуна не получила такого широкого распространения, как термообработка стали. Это объясняется тем, что пластинчатый графит, действуя как внутренние надрезы, сильно снижает прочность и пластичность металлической основы….
Металлическая матрица ковкого чугуна формируется при эвтектоидном распаде аустенита. Для получения чисто ферритной матрицы охлаждение в интервале температур эвтектоидного распада должно быть медленным (смотрите рисунок График отжига белого чугуна на…
Графитизирующему отжигу подвергают белые, серые и высокопрочные (модифицированные) чугуны. Отжиг белого чугуна на ковкий Белый чугун тверд и очень хрупок из-за большого количества эвтектического цементита в его структуре. Современный способ…