Высокотемпературная термомеханическая обработка (ВТМО)

При ВТМО проводят горячую деформацию, закалку с деформационного нагрева и старение (смотрите рисунок Схемы термомеханической обработки стареющих сплавов).

При горячей деформации повышается плотность дислокаций и возникает горячий наклеп, который в процессе самой деформации может частично или полностью сниматься в результате развития динамической полигонизации и динамической рекристаллизации.

Кривая напряжение — деформация имеет участок подъема напряжения течения, соответствующий стадии горячего наклепа, и участок спада напряжения, обусловленного развитием сначала полигонизации, а затем рекристаллизации.

При динамической полигонизации, как и при обычной статической, наблюдающейся при нагреве после холодной деформации, формирование и миграция малоугловых границ контролируются переползанием дислокаций. Отличие от статической полигонизации состоит в том, что в процессе горячей деформации под действием приложенных напряжений дислокации все время «нагоняются» в тело субзерен.

Аналогично отличие динамической рекристаллизации от статической. Во время горячей деформации непрерывно чередуются процессы упрочнения (повышения плотности дислокаций) и разупрочнения (уменьшения плотности дислокаций при полигонизации и рекристаллизации).

В зависимости от природы сплава, температуры, скорости, степени и схемы деформации сплав в момент окончания горячей деформации может находиться в наклепанном состоянии, иметь полигонизованную, рекристаллизованную или смешанную структуру (частично полигонизованную, частично рекристаллизованную).

Полностью рекристаллизованная структура с минимальной плотностью дислокаций соответствует наиболее стабильному состоянию. Если к моменту окончания горячей деформации структура не рекристаллизавана или рекристаллизована неполностью, то имеется стимул к статической рекристаллизации. По окончании деформирования с большими обжатиями можно наблюдать очень быструю рекристаллизацию без инкубационного периода, так как зародыши рекристаллизованных зерен образовались еще в процессе горячей деформации.

Назначение ВТМО состоит в том, чтобы после горячей деформации и закалки получить пересыщенный твердый раствор с нерекристаллизованной структурой, т. е. с повышенной плотностью несовершенств (границ субзерен, свободных дислокаций). В результате старения сплава с такой структурой возникают повышенные механические свойства. В большинстве случаев оптимальной является полигонизованная матрица закаленного сплава.

При проведении ВТМО должны выполняться минимум три условия:

  1. получение к концу горячей деформации нерекристаллизованной структуры;
  2. предотвращение возможной рекристаллизации после окончания горячей деформации;
  3. достижение необходимой для старения степени пересыщенности твердого раствора.

Если первые два условия не выполнены и закаленный сплав полностью рекристаллизаван, то мы имеем дело не с ВТМО, а с закалкой, проведенной с температуры деформационного нагрева. Такое совмещение операций горячей деформации и нагрева под закалку экономически выгодно, но оно не приводит к улучшению свойств по сравнению с обычной термообработкой, включающей специальный нагрев под закалку.

Получению полигонизованной структуры к моменту окончания горячей деформации способствуют повышение температуры и снижение скорости деформирования, уменьшение степени деформации, приближение схемы деформации к схеме всестороннего сжатия (как при прессовании).

«Теория термической обработки металлов»,
И.И.Новиков

Высокотемпературная термомеханическая обработка сталей, закаливаемых на мартенсит

При ВТМО аустенит деформируют в области его термодинамической стабильности и затем проводят закалку на мартенсит (смотрите рисунок Схема обработки легированной стали). После закалки проводят низкий отпуск. Основная цель обычной термообработки с деформационного (прокатного ковочного) нагрева — исключить специальный нагрев под закалку и благодаря этому получить экономическии эффект. Главная же цель ВТМО — повышение механических свойств…

Явление наследования упрочнения

Большой интерес представляет обнаруженное М. Л. Бернштейном явление наследования («обратимости») упрочнения от ВТМО при повторной термической обработке. Оказалось, что упрочнение от ВТМО сохраняется, если сталь перезакалить с кратковременной выдержкой при температуре нагрева под закалку или если упрочненную ВТМО сталь вначале подвергнуть высокому отпуску, а затем перезакалить. Например, предел прочности стали 37XH3A после ВТМО по режиму…

Термомеханическая обработка сталей, закаливаемых на мартенсит

Процессы ТМО сталей начали интенсивно изучать с середины 50-х годов в связи с изысканием новых путей повышения конструктивной прочности. Низкотемпературная термомеханическая обработка (НТМО) При НТМО переохлажденный аустенит деформируется в области его повышенной устойчивости, но обязательно ниже температуры начала рекристаллизации и затем (превращается в мартенсит. После этого проводят низкий отпуск (на рисунке не показан). Схема обработки…

Применение ВТМО

Применение ВТМО ограничивают следующие факторы. Сплав может отличаться столь узким интервалом температур нагрева под закалку, что поддерживать температуру горячей обработки давлением в таких узких пределах практически невозможно (например, в пределах ± 5 °С для дуралюмина Д16). Оптимальный температурный интервал горячей деформации может находиться значительно ниже интервала температур нагрева под закалку. Например, при прессовании алюминиевых сплавов…

Предварительная термомеханическая обработка (ПТМО)

Сущность ПТМО заключается в том, что полуфабрикат, полученный после горячей деформации в нерекристаллизованном состоянии, сохраняет нерекристаллизованную структуру и при нагреве под закалку. ПТМО отличается от ВТМО тем, что операции горячей деформации и нагрева под закалку разделены (смотрите рисунок Схемы термомеханической обработки стареющих сплавов). ПТМО широко применяют в технологии производства полуфабрикатов из алюминиевых сплавов. Давно было…