Диффузионное насыщение металлами

Металлы растворяются в железе и других металлах по способу замещения и потому медленнее, чем неметаллы, диффундируют в изделие. Как правило, диффузионное насыщение металлами проводят при более высоких температурах, чем насыщение неметаллами.

Типичные примеры — алитирование и хромирование.

Алитирование (алюминирование) применяют для повышения окалиностойкости сталей и реже чугунов. Алитируют также литые лопатки газотурбинных двигателей из жаропрочных никелевых сплавов. При нагреве алитированного изделия в окислительной среде на его поверхности образуется тонкая и прочная пленка Al2O3, предохраняющая изделие от дальнейшего окисления. Глубина алитирования в зависимости от метода и режима составляет 0,02 — 0,8 мм.

Наибольшее распространение получило алитирование стальных изделий в порошках с насыщением из газовой фазы. Порошкообразная смесь состоит из ферроалюминия, хлористого аммония и окиси алюминия.

В присутствии NH4Cl образуется газообразный хлорид алюминия AlСl3, являющийся поставщиком активных атомов алюминия. Окись алюминия предотвращает спекание частиц ферроалюминия. Алитирование проводят при 960 — 1050 °С в течение 3 — 12 ч.

Применяют также алитирование в расплаве алюминия с 8 — 112% Fe при 700 — 800 °С в течение 1 — 1,5 ч (железо добавляют в расплав для предотвращения интенсивного растворения в нем изделия).

Примером сравнительно редкого процесса химико-термической обработки с насыщением только из твердой фазы является алитирование способом металлизации (напыления) алюминия с последующим диффузионным отжигом при 900 — 1000 °С в течение 2 — 4 ч.

Диффузионное хромирование применяют для повышения коррозионной стойкости, а также окалиностойкости и износостойкости стальных деталей. Известны промышленные процессы диффузионного хромирования молибдена и ниобия для повышения жаростойкости.

Наибольшее применение получило хромирование в порошкообразных смесях феррохрома (или хрома), хлористого аммония и окиси алюминия при 1000 — 1050 °С с выдержкой 6 — 12 ч. Образующийся газообразный хлорид CrCl2 является поставщиком активных атомов хрома. Используют также хромирование в вакууме при 1000 — 1050 °С в течение нескольких часов с насыщением из паровой фазы, которая получается при испарении порошка хрома. Для повышения коррозионной стойкости и окалиностойкости поверхностный слой должен иметь структуру пластичного твердого раствора хрома в α-железе.

Если одна из целей хромирования — повышение твердости, то в поверхностном слое должны образоваться карбиды хрома (Cr23C6, Cr7С3). Для этого выбирают сталь, содержащую более 0,4% С. Толщина хромированного слоя обычно не превышает 0,2 мм.

Диффузионное удаление элементов

Удаление вредных примесей при нагреве в вакууме и других средах — это важная для ряда изделий разновидность химико-термической обработки. В основе ее лежит диффузионный процесс перемещения атомов из сердцевины к поверхности изделия (смотрите формулу и рисунок Распределение концентрации в однофазной зоне) и удаление элемента с поверхности.

Как правило, требуется сквозное удаление вредных примесей (по всему объему, а не только в поверхностных слоях). Примером является обезводороживание титановых сплавов при нагреве в вакууме для предотвращения водородной хрупкости и повышения ударной вязкости. Обезводороживание проводят при 670 — 700 °С в течение 2 — 6 ч при давлении не более 10—4 мм рт. ст.

Для комплексного удаления примесей внедрения из тугоплавких металлов их нагревают в вакууме.

В промышленности давно применяют сквозное обезуглероживание трансформаторной стали отжигом листов в водороде.

Иногда для изменения свойств поверхностного слоя используют несквозное удаление одного из основных компонентов сплава.

Процессы химико-термической обработки благодаря неисчерпаемому разнообразию химически активных сред и богатым возможностям изменения свойств поверхностных слоев и всего объема изделий широко используют в промышленности. Они быстро развиваются, завоевывая новые области применения.

«Теория термической обработки металлов»,
И.И.Новиков

Азотирование

Азотирование стальных изделий проводят в аммиаке, который при нагревании диссоциирует, поставляя активный атомарный азот: В системе Fe — N при температурах азотирование могут образовываться следующие фазы: α-раствор азота в железе (азотистый феррит), γ-раствор азота в железе (азотистый аустенит), промежуточная γ-фаза переменного состава с г. ц. к. решеткой (ей приписывают формулу Fe4N) и промежуточная ε-фаза с…

Разновидности химико-термической обработки

В промышленности применяют множество способов химико-термической обработки, различающихся диффундирующими элементами, типом и составом внешней среды, химизмом процессов в ней, техникой исполнения и другими признаками. В зависимости от агрегатного состояния внешней среды, в которую помещают обрабатываемое изделие, различают химико-термическую обработку в твердой, жидкой и газовой средах. Атомы диффундирующего элемента поступают из твердого вещества в местах прямого…

Диффузионное насыщение неметаллами

Поверхностное насыщение стали углеродом и азотом или совместно этими элементами — наиболее широко используемые процессы химико-термической обработки. Углерод и азот растворяются в железе по способу внедрения и поэтому могут быстро диффундировать на значительную глубину. Активные среды, содержащие эти элементы, дешевы, а фазы, образующиеся с участием углерода и азота в процессе насыщения или при последующей термообработке,…

Особенности строения диффузионной зоны

Диффузионную зону на шлифе можно выявить травлением благодаря измененному химическому составу поверхностного слоя. В однофазной зоне концентрация плавно изменяется от поверхности в глубь изделия (смотрите рисунок Распределение концентрации в однофазной зоне), и поэтому под микроскопом граница такой зоны размыта или чаще вообще не выявляется. Если диффузия сопровождается фазовыми превращениями, то строение диффузионной зоны резко отличается…

Кинетика роста однофазных слоев

Рассмотрим кинетику роста однофазных слоев при химико-термической обработке, основываясь на анализе диффузионных процессов, выполненном А. А. Поповым. При диффузии элемента В в металл А за время dτ граница β-фазы продвинется в сторону α-фазы на величину dL (смтрите соответствующую диаграмму состояния на рисунке Диаграмма состояния двойной системы А — В и распределение элемента в диффузионной зоне…