Закаленный сплав находится в метастабильном состоянии и обладает повышенной свободной энергией.

При закалке без полиморфного превращения и в подавляющем большинстве случаев при закалке с полиморфным превращением образуется пересыщенный твердый раствор и закаленный сплав стремится понизить свою свободную энергию, в результате чего твердый раствор распадается.

Уже при комнатной температуре могут образовываться выделения из пересыщенного раствора, однако в большинстве сплавов диффузионная подвижность атомов при комнатной температуре недостаточна, чтобы распад раствора прошел в необходимой степени за приемлемое время.

Поэтому для изменения структуры и свойств закаленного сплава его назревают — подвергают старению или отпуску.

Исторически так сложилось, что для одних сплавов, например алюминиевых, использовали преимущественно термин «старение», для других, например углеродистых сталей, — «отпуск», а для третьих, например бронз и титановых сплавов, оба эти термина использовали на равных правах. Сравнительно недавно было предложено термин «отпуск» применять только к тем сплавам, которые были подвергнуты закалке с полиморфным превращением, а термин «старение» — в случае закалки без полиморфного превращения. Такое классификационное деление использовано в книге.

Главным процессом при старении и отпуске закаленного сплава является распад метастабильного твердого раствора. При этом сплав переходит в более стабильное состояние, хотя обычно и далекое от истинного равновесия, для которого характерен абсолютный минимум свободной анергии. Процессы распада пересыщенного раствора в закаленном сплаве, так же как возврат и рекристаллизация, протекают самопроизвольно, с выделением тепла.

Факт нагревания сплава не противоречит представлению о самопроизвольности процессов, происходящих в сплаве при старении и отпуске, так как нагревание необходимо лишь для ускорения диффузии, лежащей в основе всех структурных изменений при распаде пересыщенных растворов.

Основные параметры старения и отпуска
— температура и время выдержки. Скорости нагревания и охлаждения обычно играют подчиненную роль. Исключение составляет специфическое явление отпускной хрупкости легированных сталей при замедленном охлаждении с температуры отпуска (смотрите Изменение механических свойств при отпуске сталей и выбор режима отпуска).

«Теория термической обработки металлов»,
И.И.Новиков

Изменение свойств легированных сталей

Легирующие элементы, затрудняющие распад мартенсита и коагуляцию карбидов (смотрите Структурные изменения при отпуске сталей), смещают температурную границу начала интенсивного разупрочнения при отпуске с 200 — 300 до 450 — 550…

Отпускная хрупкость

Отпускная хрупкость присуща многим сталям. Сталь в состоянии отпускной хрупкости характеризуется низкой ударной вязкостью. На других механических свойствах при комнатной температуре состояние отпускной хрупкости практически не сказывается. На рисунке схематично…

Изменение свойств мартенситно-стареющих сталей

Характер зависимости механических свойств мартенситно-стареющих сталей от температуры отпуска такой же, как у всех дисперсионно-твердеющих сплавов: рост прочностных свойств, достижение максимума упрочнения и затем разупрочнение. По аналогии со старением можно…

Температуры отпуска

По температуре нагрева различают низкий, средний и высокий отпуск. Низкий отпуск на отпущенный мартенсит (120 — 250 °С) широко применяют после закалки инструментов, цементованных и цианированных изделий и после поверхностной…

Влияние легирующих элементов

Диффузионная подвижность атомов легирующих элементов, растворенных в α-железе по способу замещения, на много порядков ниже, чем диффузионная подвижность атомов углерода, который растворен в железе по способу внедрения. При температурах отпуска…

Отпуск мартенситностареющих сталей

Мартенситностареющие стали — это безуглеродистые сплавы на базе системы Fe — Ni, легированные дополнительно кобальтом, молибденом, титаном и другими элементами. Типичный пример — сплав железа с 17 — 19% Ni,…

Изменение механических свойств при отпуске сталей и выбор режима отпуска

Изменение свойств углеродистых сталей Закаленная углеродистая сталь характеризуется не только высокой твердостью, но и очень большой склонностью к хрупкому разрушению. Кроме того, при закалке возникают значительные остаточные напряжения. Поэтому закалку…

Возврат после старения

Явление возврата после старения было открыто на дуралюмине. Если естественно состаренный дуралюмин нагреть до температуры примерно 250 °С, выдержать 20 — 60 с и быстро охладить, то его свойства возвращаются…

Структурные изменения при отпуске сталей

Структура закаленной стали метастабильна. При нагревании после закалки вследствие увеличивающейся подвижности атомов создаются условия для процессов, изменяющих структуру стали в направлении к более равновесному состоянию. Характер этих процессов определяется тремя…

Отпуск углеродистых сталей

Характер структурных изменений при отпуске углеродистых сталей зависит от температуры и продолжительности отпуска и содержания углерода в стали. С повышением содержания углерода в аустените возрастает пересыщенность α-раствора, снижается температура Мн,…

Образование цементита

Образование цементита Fe3C со структурой, одинаковой или близкой к структуре цементита отожженной стали, происходит при температурах выше 250 °С, причем наиболее активно в интервале 300 — 400 °С. Цементит Fe3C…

Распад остаточного аустенита

Распад остаточного аустенита играет существенную роль в процессах отпуска высокоуглеродистых сталей, где он находится в значительном количестве (смотрите рисунок Влияние содержания углерода). Распад аустенита активно протекает в интервале температур примерно…