Термомеханическая обработка сталей, закаливаемых на мартенсит

Процессы ТМО сталей начали интенсивно изучать с середины 50-х годов в связи с изысканием новых путей повышения конструктивной прочности.

Низкотемпературная термомеханическая обработка (НТМО)

При НТМО переохлажденный аустенит деформируется в области его повышенной устойчивости, но обязательно ниже температуры начала рекристаллизации и затем (превращается в мартенсит. После этого проводят низкий отпуск (на рисунке не показан).


Схема обработки легированной стали

Схема обработки легированной стали

Схема высокотемпературной (BTMO) и низкотемпературной (НТМО)
термомеханической обработки легированной стали,
закаливаемой на мартенсит.


Сильное упрочнение в результате пластической деформации переохлажденного аустенита с последующей закалкой с температуры деформирования было открыто американскими исследователями Лидсом и Ван Цайленом в 1954 г. Этот процесс, названный аусформингом, позволил повысить предел прочности конструкционных легированных сталей до 280 — 330 кгс/мм2 при 6 = 57%.

Показатели пластичности и ударной вязкости получались не ниже, а в некоторых случаях даже выше, чем после обычной термообработки, обеспечивающей σв = 1180 / 220 кгс/мм3. Понятно, что получение «сверхпрочности» сталей методом аусформинга вызвало громадный Интерес. 

Причина упрочнения стали при НТМО — наследование мартенситом дислокационной структуры деформированного аустенита.

Холодной деформацией нельзя сильно упрочнить сталь с мартенситной структурой, так как мартенсит, содержащий углерод, хрупок и не поддается большим обжатиям. Аустенит же при температурах ниже температуры начала рекристаллизации можно деформировать с большими обжатиями. При такой деформации в аустените сильно возрастает общая плотность дислокаций, образуются плотные сплетения дислокаций и ячеистая структура.

При мартенситном превращении соседи любого атома в аустените остаются соседями этого же атома в мартенсите. Поэтому дислокации при γ → α-превращении по мартенситному механизму не исчезают, а «передаются» от исходной фазы к новой, т. е. мартенсит наследует субструктуру деформированного аустенита. Очень высокая плотность дислокаций в мартенсите, закрепленных атомами углерода и карбидными выделениями, обусловливает получение рекордных значений прочности после НТМО.

Измельченностью кристаллов мартенсита объясняется приемлемый уровень показателей пластичности стали, находящейся в высокопрочном состоянии.

НТМО практически применима только к легированным сталям, обладающим значительной устойчивостью переохлажденного аустенита.

Для получения рекордных значений предела прочности (до 330 кгс/мм2) легированные стали можно подвергать НТМО по схеме аустенитизация с нагревом выше АС3 переохлаждение аустенита до 600 — 400 °С — обработка давлением с обжатием до 90% — закалка на мартенсит отпуск при 100 — 200 °С.

Прирост прочностных свойств при НТМО зависит от степени и температуры деформации, температуры отпуска, содержания углерода и других факторов. С увеличением степени деформации упрочнение от НТМО непрерывно возрастает.


Зависимость механических свойств после НТМО стали

Зависимость механических свойств после НТМО стали

Зависимость механических свойств после НТМО стали 30ХНМА от температуры прокатки. Режим НТМО: аустенитизация при 1150 °С, подстуживанне, прокатка с обжатием на 50%, охлаждение в масле, отпуск при 200 °С, 4 ч (С. И. Сахин, О. Г. Соколов).


Влияние температуры прокатки при НТМО на свойства хромоникельмолибденовой стали показано на рисунке. Рост прочностных свойств стали при понижении температуры деформирования обусловлен усилением наклепа аустенита.

Снижение прочностных свойств в результате прокатки при 400 °C вызвано бейнитным превращением во время деформации. Так как немартенситные продукты превращения, образующиеся при НТМО, снижают прочность, то процесс следует вести таким образом, чтобы они не появлялись.

Необходимо учитывать, что обычная С-диаграмма не может дать точных количественных данных для установления температурно-временного режима деформирования при НТМО, так как под действием деформации распад аустенита ускоряется. Инкубационный период при деформировании переохлажденного аустенита может уменьшиться в несколько раз.

Оптимальные механические свойства после НТМО конструкционных сталей получаются при низкотемпературном отпуске (100 — 1200 °С). С повышением температуры отпуска упрочнение от НТМО постепенно теряется.

Наиболее высокие свойства в результате НТМО. достигаются на сталях с 0,4 — 0,5% С. При большем содержании углерода из-за охрупчивания значительно снижаются относительное удлинение и предел прочности.

Внедрение НТМО в производство существенно затрудняется необходимостью использования мощного оборудования для обработки давлением, так как для получения высокой прочности сталь должна подвергаться большим обжатиям (не менее 50%) при таких температурах, при которых сопротивление деформированию очень высокое.

Другой существенный недостаток НТМО
— невысокая сопротивляемость хрупкому разрушению сильно упрочненной стали. При повышении плотности дислокаций в мартенсите, вызывающем сильное упрочнение, сопротивление распространению трещины (важнейшая характеристика конструкционного материала) при НТМО не изменяется или даже снижается.

Учитывая необходимость использования мощного специализированного оборудования для деформирования стали и недостаточную для современных конструкций сопротивляемость хрупкому разрушению, вряд ли можно рассчитывать на широкое использование НТМО в промышленности.

«Теория термической обработки металлов»,
И.И.Новиков

Высокотемпературная термомеханическая обработка сталей, закаливаемых на мартенсит

При ВТМО аустенит деформируют в области его термодинамической стабильности и затем проводят закалку на мартенсит (смотрите рисунок Схема обработки легированной стали). После закалки проводят низкий отпуск. Основная цель обычной термообработки с деформационного (прокатного ковочного) нагрева — исключить специальный нагрев под закалку и благодаря этому получить экономическии эффект. Главная же цель ВТМО — повышение механических свойств…

Явление наследования упрочнения

Большой интерес представляет обнаруженное М. Л. Бернштейном явление наследования («обратимости») упрочнения от ВТМО при повторной термической обработке. Оказалось, что упрочнение от ВТМО сохраняется, если сталь перезакалить с кратковременной выдержкой при температуре нагрева под закалку или если упрочненную ВТМО сталь вначале подвергнуть высокому отпуску, а затем перезакалить. Например, предел прочности стали 37XH3A после ВТМО по режиму…

Высокотемпературная термомеханическая обработка (ВТМО)

При ВТМО проводят горячую деформацию, закалку с деформационного нагрева и старение (смотрите рисунок Схемы термомеханической обработки стареющих сплавов). При горячей деформации повышается плотность дислокаций и возникает горячий наклеп, который в процессе самой деформации может частично или полностью сниматься в результате развития динамической полигонизации и динамической рекристаллизации. Кривая напряжение — деформация имеет участок подъема напряжения течения,…

Применение ВТМО

Применение ВТМО ограничивают следующие факторы. Сплав может отличаться столь узким интервалом температур нагрева под закалку, что поддерживать температуру горячей обработки давлением в таких узких пределах практически невозможно (например, в пределах ± 5 °С для дуралюмина Д16). Оптимальный температурный интервал горячей деформации может находиться значительно ниже интервала температур нагрева под закалку. Например, при прессовании алюминиевых сплавов…

Предварительная термомеханическая обработка (ПТМО)

Сущность ПТМО заключается в том, что полуфабрикат, полученный после горячей деформации в нерекристаллизованном состоянии, сохраняет нерекристаллизованную структуру и при нагреве под закалку. ПТМО отличается от ВТМО тем, что операции горячей деформации и нагрева под закалку разделены (смотрите рисунок Схемы термомеханической обработки стареющих сплавов). ПТМО широко применяют в технологии производства полуфабрикатов из алюминиевых сплавов. Давно было…