Термомеханическая обработка стареющих сплавов

На рисунке приведены основные схемы ТМО стареющих сплавов. Зубчатыми линиями обозначена пластическая деформация.


Схемы термомеханической обработки стареющих сплавов

Схемы термомеханической обработки стареющих сплавов


Низкотемпературная термомеханическая обработка (НТМО)

НТМО стареющих сплавов — это первая по времени появления (30-е годы) и наиболее широко используемая в промышленности термомеханическая обработка.

Основное назначение НТМО — повышение прочностных свойств.

При НТМО сплав вначале подвергают обычной закалке, а затем перед старением — холодной деформации.

По сравнению со старением без предшествующей деформации при НТМО получают более высокие пределы прочности и текучести, но и более низкие показатели пластичности.

На рисунке показано влияние степени холодной деформации на твердость закаленного никелевого сплава (кривая 1) и того же сплава, состаренного после деформации (кривая 2).


Влияние степени обжатия

Влияние степени обжатия

Влияние степени обжатия при волочении после закалки с 1000 °С на твердость холоднотянутой и состаренной проволоки диаметром 4 мм из сплава нимоник-90 (по данным У. Беттериджа):

1 — холоднотянутая;
2 — деформация + старение при 460 °С, 16 ч.


Упрочнение при НТМО вызвано двумя причинами. Во-первых, холодная деформация создает наклеп, и последующее дисперсионное твердение начинается от более высокого исходного уровня твердости сплава. Во-вторых, что особенно важно, холодная деформация увеличивает эффект дисперсионного твердения. Так, при отсутствии холодного наклепа упрочнение сплава нимоник-90 в результате старения при 450 °С очень мало — всего 15 кгс/мм2. С увеличением степени холодной деформации упрочнение при старении непрерывно возрастает (кривые 1 и 2 на рисунке расходятся).

При обжатии 90% прирост твердости в результате старения составил 175 кгс/мм2. Следовательно, в рассматриваемом случае холодный наклеп увеличил упрочнение при старении на порядок (!). Такой сильный эффект упрочнения от НТМО по сравнению с упрочнением при термической обработке по обычной схеме (закалка + старение) — сравнительно редкое явление.

Обусловлен он тем, что температура старения 450 °С слишком низка для нимоника, и при отсутствии холодного наклепа распад пересыщенного раствора при этой температуре развивается очень вяло. Если после закалки проводить старение при температуре, оптимальной для максимального упрочнения (около 700 °С), то эффект от введения холодного наклепа будет значительно меньше.

В самом первом приближении можно утверждать, что холодный наклеп, повышая плотность несовершенств в кристаллах пересыщенного раствора, делает его термодинамически менее стабильным и ускоряет старение. Однако экспериментальные факты и более детальный анализ показывают, что влияние наклепа на старение может быть весьма сложным. Характер этого влияния зависит от режимов закалки, деформации и старения, от природы сплава, а для одного сплава — от типа выделений при старении.

«Теория термической обработки металлов»,
И.И.Новиков

Высокотемпературная термомеханическая обработка сталей, закаливаемых на мартенсит

При ВТМО аустенит деформируют в области его термодинамической стабильности и затем проводят закалку на мартенсит (смотрите рисунок Схема обработки легированной стали). После закалки проводят низкий отпуск. Основная цель обычной термообработки с деформационного (прокатного ковочного) нагрева — исключить специальный нагрев под закалку и благодаря этому получить экономическии эффект. Главная же цель ВТМО — повышение механических свойств…

Явление наследования упрочнения

Большой интерес представляет обнаруженное М. Л. Бернштейном явление наследования («обратимости») упрочнения от ВТМО при повторной термической обработке. Оказалось, что упрочнение от ВТМО сохраняется, если сталь перезакалить с кратковременной выдержкой при температуре нагрева под закалку или если упрочненную ВТМО сталь вначале подвергнуть высокому отпуску, а затем перезакалить. Например, предел прочности стали 37XH3A после ВТМО по режиму…

Термомеханическая обработка сталей, закаливаемых на мартенсит

Процессы ТМО сталей начали интенсивно изучать с середины 50-х годов в связи с изысканием новых путей повышения конструктивной прочности. Низкотемпературная термомеханическая обработка (НТМО) При НТМО переохлажденный аустенит деформируется в области его повышенной устойчивости, но обязательно ниже температуры начала рекристаллизации и затем (превращается в мартенсит. После этого проводят низкий отпуск (на рисунке не показан). Схема обработки…

Высокотемпературная термомеханическая обработка (ВТМО)

При ВТМО проводят горячую деформацию, закалку с деформационного нагрева и старение (смотрите рисунок Схемы термомеханической обработки стареющих сплавов). При горячей деформации повышается плотность дислокаций и возникает горячий наклеп, который в процессе самой деформации может частично или полностью сниматься в результате развития динамической полигонизации и динамической рекристаллизации. Кривая напряжение — деформация имеет участок подъема напряжения течения,…

Применение ВТМО

Применение ВТМО ограничивают следующие факторы. Сплав может отличаться столь узким интервалом температур нагрева под закалку, что поддерживать температуру горячей обработки давлением в таких узких пределах практически невозможно (например, в пределах ± 5 °С для дуралюмина Д16). Оптимальный температурный интервал горячей деформации может находиться значительно ниже интервала температур нагрева под закалку. Например, при прессовании алюминиевых сплавов…