Диффузионное насыщение неметаллами

Поверхностное насыщение стали углеродом и азотом или совместно этими элементами — наиболее широко используемые процессы химико-термической обработки.

Углерод и азот растворяются в железе по способу внедрения и поэтому могут быстро диффундировать на значительную глубину. Активные среды, содержащие эти элементы, дешевы, а фазы, образующиеся с участием углерода и азота в процессе насыщения или при последующей термообработке, резко изменяют механические и физико-химические свойства стали.

Науглероживание (цементация)

Цементации подвергают изделия из сталей с низким содержанием углерода (обычно до 0,25%).

При цементации в твердом карбюризаторе изделия укладывают в ящики, куда засыпают и утрамбовывают древесный уголь, смешанный с 20 — 26% ВаСO3.

При нагревании углерод древесного угля, соединяясь с кислородом воздуха, находящегося в цементационном ящике между частицами карбюризатора, образует окись углерода:

Формула

В контакте с железом окись углерода дает атомарный углерод:

Формула

Этот активный углерод (in statu nascendi) поглощается аустенитом и диффундирует в глубь изделия.

Добавка ВаСО3 сильно интенсифицирует процесс цементации, поставляя дополнительное количество окиси углерода и соответственно активного углерода:

Формула

Для газовой цементации в качестве карбюризатора используют природный газ (состоит в основном из СН4), контролируемые атмосферы, получаемые в специальных генераторах, а также жидкие углеводороды (керосин, бензол и др.), каплями подаваемые в герметичное рабочее пространство печи, где они образуют активную газовую фазу.

Основной поставщик углерода в газообразных карбюризаторах — метан:

Формула

В искусственно полученной контролируемой атмосфере таким поставщиком является окись углерода.

Газовая цементация — основной процесс при массовом производстве, а цементацию в твердом карбюризаторе используют в мелкосерийном производстве.

Глубина цементации в зависимости от назначения изделия и состава стали обычно находится в пределах 0,6 — 2,0 мм.

Цементацию проводят при 910 — 930 °С, а иногда, для ускорения, при 1000 — 1050 °С. С повышением температуры уменьшается время достижения заданной глубины цементации. Так, при газовой цементации науглероженный слой толщиной 1,0 — 1,3 мм получают при 920 °С за 15 ч, а при 1000 °С — за 8 ч. Чтобы предотвратить сильный перегрев (рост аустенитного зерна), высокотемпературной цементации подвергают наследственно мелкозернистые стали.

Концентрация углерода в поверхностном слое изделия обычно составляет 0,8 — 1,0% и не достигает предела растворимости яри температуре цементации. Следовательно, сетка FeC при температуре цементации не образуется, и поверхностный слой, как и сердцевина, находится в аустенитном состоянии.

После медленного охлаждения цементованный слой с переменной концентрацией углерода состоит из феррита и цементита и характеризуется гаммой структур, типичных для заэвтектоидной, эвтектоидной и доэвтектоидной стали (смотрите рисунок Участок диаграммы состояния Fe — С).

Цементация является промежуточной операцией, цель которой — обогащение поверхностного слоя углеродом. Требуемое упрочнение поверхностного слоя изделия достигается закалкой после цементации. Закалка должна не только упрочнить поверхностный слой, но и исправить структуру перегрева, возникающую из-за многочасовой выдержки стали при температуре цементации.

После цементации в твердом карбюризаторе ответственные изделия подвергают двойной закалке, так как содержание углерода в сердцевине и на поверхности изделия разное, а оптимальная температура нагрева под закалку зависит от содержания углерода в стали (смотрите рисунок Интервал температур нагрева под закалку углеродистых сталей).

Первую закалку проводят с нагревом до 850 — 900 °С (выше точки А3 сердцевины изделия), чтобы произошла полная фазовая перекристаллизация с измельчением аустенитного зерна в доэвтектоидной стали. В углеродистой стали из-за малой глубины прокаливаемости сердцевина изделия после первой закалки состоит из феррита и перлита.

Вместо первой закалки к углеродистой стали можно применять нормализацию. В прокаливающейся насквозь легированной стали сердцевина изделия состоит из низкоуглеродистого мартенсита. Такая структура обеспечивает повышенную прочность и достаточную вязкость сердцевины.

После первой закалки цементованный слой оказывается перегретым и содержащим повышенное количество остаточного аустенита. Поэтому применяют вторую закалку с температуры 760 — 780 °С, оптимальной для заэвтектоидных сталей. После второй закалки поверхностный слой состоит из мелкоигольчатого высокоуглеродистого мартенсита и глобулярных включений вторичного карбида.

При газовой цементации чаще всего применяют одну закалку с цементационного нагрева после подстуживания изделия до температур 840 — 860 °С. После закалки цементованные изделия всегда нагревают до 160 — 180 °С для уменьшения закалочных напряжений.

Цементацию широко применяют в машиностроении для повышения твердости и износостойкости изделий с сохранением высокой вязкости их сердцевины. Удельный объем закаленного науглероженного слоя больше, чем сердцевины, и поэтому в нем возникают значительные сжимающие напряжения. Остаточные напряжения сжатия в поверхностном слое, достигающие 40 — 50 кгс/мм2, повышают предел выносливости изделия.

Низкое содержание углерода (0,08 — 0,2 : 5%) обеспечивает высокую вязкость сердцевины. Цементации подвергают качественные стали 08, 10, 15 и 20 и легированные стали 12ХНЗА, 18ХГТ и др.

Основное назначение легирования здесь — повышение прокаливаемости и соответственно механических свойств сердцевины изделий из цементуемой стали.

«Теория термической обработки металлов»,
И.И.Новиков

Азотирование

Азотирование стальных изделий проводят в аммиаке, который при нагревании диссоциирует, поставляя активный атомарный азот: В системе Fe — N при температурах азотирование могут образовываться следующие фазы: α-раствор азота в железе (азотистый феррит), γ-раствор азота в железе (азотистый аустенит), промежуточная γ-фаза переменного состава с г. ц. к. решеткой (ей приписывают формулу Fe4N) и промежуточная ε-фаза с…

Диффузионное насыщение металлами

Металлы растворяются в железе и других металлах по способу замещения и потому медленнее, чем неметаллы, диффундируют в изделие. Как правило, диффузионное насыщение металлами проводят при более высоких температурах, чем насыщение неметаллами. Типичные примеры — алитирование и хромирование. Алитирование (алюминирование) применяют для повышения окалиностойкости сталей и реже чугунов. Алитируют также литые лопатки газотурбинных двигателей из жаропрочных…

Разновидности химико-термической обработки

В промышленности применяют множество способов химико-термической обработки, различающихся диффундирующими элементами, типом и составом внешней среды, химизмом процессов в ней, техникой исполнения и другими признаками. В зависимости от агрегатного состояния внешней среды, в которую помещают обрабатываемое изделие, различают химико-термическую обработку в твердой, жидкой и газовой средах. Атомы диффундирующего элемента поступают из твердого вещества в местах прямого…

Особенности строения диффузионной зоны

Диффузионную зону на шлифе можно выявить травлением благодаря измененному химическому составу поверхностного слоя. В однофазной зоне концентрация плавно изменяется от поверхности в глубь изделия (смотрите рисунок Распределение концентрации в однофазной зоне), и поэтому под микроскопом граница такой зоны размыта или чаще вообще не выявляется. Если диффузия сопровождается фазовыми превращениями, то строение диффузионной зоны резко отличается…

Последовательность образования фаз

Последовательность образования фаз при диффузионном изменении состава соответствует последовательности их расположения на диаграмме состояния (α — β — γна рисунок Диаграмма состояния двойной системы А — В). В таком чередовании фазы появляются при повышении концентрации диффундирующего элемента в поверхностном слое изделия с увеличением времени выдержки и в таком же порядке они располагаются в диффузионной зоне…