Отпускная хрупкость

Отпускная хрупкость присуща многим сталям. Сталь в состоянии отпускной хрупкости характеризуется низкой ударной вязкостью. На других механических свойствах при комнатной температуре состояние отпускной хрупкости практически не сказывается.

На рисунке схематично показано влияние температуры отпуска на ударную вязкость легированной стали, в сильной степени склонной к отпускной хрупкости. Во многих легированных сталях наблюдаются два температурных интервала отпускной хрупкости. При отпуске в интервале 250 — 4000 °С возникает необратимая, а в интервале 450 — 650 °С — обратимая отпускная хрупкость.


Влияние температуры отпуска на ударную вязкость стали

Влияние температуры отпуска на ударную вязкость стали

Влияние температуры отпуска на ударную вязкость стали с высокой склонностью к отпускной хрупкости (схема):

1 — быстрое охлаждение в воде или масле;
2 — медленное охлаждение на воздухе или с печью.


Ударная вязкость закаленной стали после отпуска в интервале 250 — 400 °С меньше, чем после отпуска при температурах ниже 250 °С. Если хрупкую сталь, отпущенную при 250 — 400 °С, нагреть выше 400 °С и перевести в вязкое состояние, то повторный отпуск в интервале 250 — 400 °С не возвращает сталь в хрупкое состояние. Скорость охлаждения с температур отпуска в интервале 250 — 400 °С не влияет на ударную вязкость.

Сталь в состоянии необратимой отпускной хрупкости имеет блестящий межкристаллитный излом по границам бывших аустенитных зерен. Эта хрупкость свойственна в той или иной мере всем сталям, в том числе и углеродистым. Поэтому средний отпуск стали, как правило, не используют, хотя он и обеспечивает высокий предел текучести.

Причиной необратимой отпускной хрупкости считают карбидообразование при распаде мартенсита, в частности выделение карбида в виде пленки по границам зерен. Эта пленка при более высоких температурах отпуска исчезает, а при повторном нагреве до 250 — 400 °С не восстанавливается. Кремний в малолегированных сталях, задерживая распад мартенсита, устраняет необратимую отпускную хрупкость.

Ударная вязкость многих сортов легированной стали после высокого отпуска при 450 — 650 °С зависит от скорости охлаждения с температуры отпуска. При быстром охлаждении с температуры высокого отпуска (в воде или масле) повышение температуры отпуска в интервале 450 — 650 °С приводит к нормальному росту ударной вязкости (какой наблюдается у углеродистой стали при любой скорости охлаждения).

После медленного охлаждения с температуры отпуска в интервале 450 — 650 °С (с печью или на воздухе) ударная вязкость многих сортов легированной стали оказывается более низкой, чем после быстрого охлаждения. Сталь в состоянии обратимой хрупкости имеет межкристаллитный излом по границам исходных аустенитных зерен.

Отпускную хрупкость, возникшую из-за медленного охлаждения при высоком отпуске, можно устранить повторным высоким отпуском, но с быстрым охлаждением. Ударную вязкость можно вновь снизить, проведя новый высокий отпуск с медленным охлаждением. Вследствие чередования повышения и понижения ударной вязкости при повторных нагревах с разной скоростью охлаждения отпускная хрупкость, возникающая после отпуска в интервале 450 — 650 °С, называется обратимой.

На восприимчивость стали к отпускной хрупкости большое влияние оказывает химический состав. Углеродистая сталь во время испытаний на ударный изгиб при комнатной температуре нечувствительна к скорости охлаждения после высокого отпуска. Фосфор, сурьма, мышьяк и марганец наиболее активно вызывают отпускную хрупкость, а хром действует слабее.

Хромистые стали без других добавок маловосприимчивы к отпускной хрупкости. Введение в хромистую сталь добавок марганца, кремния и никеля резко повышает ее восприимчивость к отпускной хрупкости. Один никель не вызывает отпускной хрупкости, но при совместном присутствии в стали никеля и хрома или никеля и марганца отпускная хрупкость выражена особенно сильно.

Молибден и вольфрам уменьшают склонность стали к отпускной хрупкости.
Особенно эффективен в этом отношении молибден, полезное действие которого проявляется уже при концентрации его 0,2%.

Так как конструкционные стали для ответственных изделий подвергают улучшению, то обратимая отпускная хрупкость является серьезной проблемой. О причинах обратимой хрупкости сушествуют различные мнения.

Длительное время большая часть исследователей придерживалась гипотезы «растворения — выделения», согласно которой ударная вязкость падает из-за выделения по границам зерен каких-то фаз (карбидов, фосфидов или др.). При нагревании стали до температуры высокого отпуска эти фазы переходят в α-раствор, а при медленном охлаждении они выделяются из него и сталь становится хрупкой.

Быстрое охлаждение с температуры высокого отпуска предотвращает выделение фаз, понижающих хрупкую прочность. Гипотеза «растворения — выделения» объясняет обратимость отпускной хрупкости.

Применение специальных реактивов приводит к растравливанию границ исходного аустенитного зерна в стали, находящейся в состоянии обратимой отпускной хрупкости. Пониженная химическая стойкость границ зерен в хрупкой стали подтверждает, что при медленном охлаждении с температуры высокого отпуска действительно на границах зерен происходят какие-то структурные изменения.

Они вызывают снижение ударной вязкости, но практически не сказываются на других механических характеристиках, измеряемых при комнатной температуре.

Объясняется это тем, что ударная вязкость — в высшей степени структурно чувствительное свойство, особенно чувствительное к состоянию границ зерен.

Л. М. Утевский утверждает, что обратимая отпускная хрупкость обусловлена не выделением новой фазы, а лишь изменением состава раствора вблизи границ зерен. Так, обогащение приграничных зол фосфором, снижающим работу образования межзеренных трещин, приводит к развитию отпускной хрупкости.

Практические меры борьбы с обратимой отпускной хрупкостью
— быстрое охлаждение с температуры отпуска (в воде или масле) и легирование стали молибденом или вольфрамом.

«Теория термической обработки металлов»,
И.И.Новиков

Изменение свойств легированных сталей

Легирующие элементы, затрудняющие распад мартенсита и коагуляцию карбидов (смотрите Структурные изменения при отпуске сталей), смещают температурную границу начала интенсивного разупрочнения при отпуске с 200 — 300 до 450 — 550 °С. Повышение красностойкости закаленной стали, т. е. способности ее сопротивляться смягчению при нагревании, — одна из основных целей легирования в производстве инструмента. Для конструкционных легированных…

Изменение свойств мартенситно-стареющих сталей

Характер зависимости механических свойств мартенситно-стареющих сталей от температуры отпуска такой же, как у всех дисперсионно-твердеющих сплавов: рост прочностных свойств, достижение максимума упрочнения и затем разупрочнение. По аналогии со старением можно выделить стадии упрочняющего и разупрочняющего отпуска. Упрочнение вызвано образованием сегрегаций на дислокациях и, главное, частично когерентных выделений промежуточных фаз типа Ni3Ti и Ni3Mo. Разупрочнение связано,…

Влияние легирующих элементов

Диффузионная подвижность атомов легирующих элементов, растворенных в α-железе по способу замещения, на много порядков ниже, чем диффузионная подвижность атомов углерода, который растворен в железе по способу внедрения. При температурах отпуска ниже примерно 450 °С в матрице не происходит диффузионного перераспределения легирующих элементов: из α-раствора выделяются карбиды железа, в которых концентрация легирующих элементов такая же, как…

Отпуск мартенситностареющих сталей

Мартенситностареющие стали — это безуглеродистые сплавы на базе системы Fe — Ni, легированные дополнительно кобальтом, молибденом, титаном и другими элементами. Типичный пример — сплав железа с 17 — 19% Ni, 7 — 9% Со, 4,5 — 5% Мо и 0,6 — 0,9% Ti (Н18К9М5Т). Сплавы этого типа после воздушной закалки на мартенсит подвергают отпуску при…

Изменение механических свойств при отпуске сталей и выбор режима отпуска

Изменение свойств углеродистых сталей Закаленная углеродистая сталь характеризуется не только высокой твердостью, но и очень большой склонностью к хрупкому разрушению. Кроме того, при закалке возникают значительные остаточные напряжения. Поэтому закалку углеродистых сталей обычно не применяют как окончательную операцию, хотя она и может сообщить стали высокую прочность (σв = 130 / 200 кгс/мм2). Для увеличения вязкости…