Главная / Теория термической обработки металлов / Старение и отпуск / Отпуск / Изменение механических свойств при отпуске сталей и выбор режима отпуска

Изменение механических свойств при отпуске сталей и выбор режима отпуска

Изменение свойств углеродистых сталей

Закаленная углеродистая сталь характеризуется не только высокой твердостью, но и очень большой склонностью к хрупкому разрушению. Кроме того, при закалке возникают значительные остаточные напряжения. Поэтому закалку углеродистых сталей обычно не применяют как окончательную операцию, хотя она и может сообщить стали высокую прочность (σв = 130 / 200 кгс/мм2). Для увеличения вязкости и уменьшения закалочных напряжений после закалки применяют отпуск.

Распад мартенсита, казалось бы, должен приводить к дисперсионному твердению, и в общем случае зависимость прочностных свойств стали от температуры отпуска должна быть качественно такая же, как и при старении цветных сплавов. Однако на рисунке видно, что до температуры отпуска около 100 °С твердость закаленной стали или практически не меняется или слабо (на 1 — 2 единицы HRC) возрастает. С дальнейшим повышением температуры отпуска твердость плавно снижается.


Зависимость твердости углеродистых сталей

Зависимость твердости углеродистых сталей

Зависимость твердости углеродистых сталей разного состава
от температуры отпуска (Г. В. Курдюмов).


Почему же распад мартенсита с выделением мелких частиц карбидов при низкотемпературном отпуске закаленной стали не вызывает сильного дисперсионного твердения аналогично дисперсионному твердению алюминиевых и других стареющих сплавов?

Объясняется это тем, что из-за высокой подвижности атомов углерода они успевают образовывать сегрегаты на дислокациях уже в период закалочного охлаждения. Таким образом, в период закалочного охлаждения происходит самоотпуск, причем дисперсионное твердение может дойти до стадии максимального упрочнения.

Поскольку углерод, растворенный в α-железе, вносит большой вклад в упрочнение мартенсита (смотрите Изменение свойств сплавов при закалке на мартенсит), то обеднение раствора углеродом при выделении промежуточных карбидов (например, ε-карбида) уже при низких температурах отпуска вызывает разупрочнение.

С ростом температуры отпуска разупрочнение усиливается из-за следующих причин:

  1. уменьшения концентрации углерода в α-растворе;
  2. нарушения когерентности на границе карбид — матрица и снятия упругих микронапряжений;
  3. коагуляции карбидов и увеличения межчастичного расстояния;
  4. развития возврата и рекристаллизации.

В разных температурных интервалах преобладает действие разных факторов разупрочнения в соответствии с интенсивностью развития тех или иных структурных изменений (смотрите Структурные изменения при отпуске сталей). В высокоуглеродистых сталях, содержащих значительное количество остаточного аустенита, распад его с выделением карбида задерживает падение твердости, а в интервале температур 200 — 250 °С даже несколько увеличивает ее.


Влияние температуры отпуска на механические свойства стали 45

Влияние температуры отпуска на механические свойства стали 45


Так как упрочняющий отпуск закаленной углеродистой стали не имеет практического значения, то часто с отпуском любых сталей связывают представление об обязательном смягчении, хотя, как будет показано ниже, это представление ошибочно.

Прочностные характеристики углеродистой стали (предел прочности, предел текучести и твердость) непрерывно уменьшаются с ростом температуры отпуска выше 300 °С, а показатели пластичности (относительное удлинение и сужение) непрерывно повышаются. Ударная вязкость, очень важная характеристика конструкционной стали, начинает интенсивно возрастать при отпуске выше 300 °С.

Максимальной ударной вязкостью обладает сталь с сорбитной структурой, отпущенная при 600 °С. Некоторое снижение ударной вязкости при температурах отпуска выше 600 °С можно объяснить тем, что частицы цементита по границам ферритных зерен, растущие за счет растворения частиц внутри α-фазы, становятся слишком грубыми.

«Теория термической обработки металлов»,
И.И.Новиков

Изменение свойств легированных сталей

Легирующие элементы, затрудняющие распад мартенсита и коагуляцию карбидов (смотрите Структурные изменения при отпуске сталей), смещают температурную границу начала интенсивного разупрочнения при отпуске с 200 — 300 до 450 — 550 °С. Повышение красностойкости закаленной стали, т. е. способности ее сопротивляться смягчению при нагревании, — одна из основных целей легирования в производстве инструмента. Для конструкционных легированных…

Отпускная хрупкость

Отпускная хрупкость присуща многим сталям. Сталь в состоянии отпускной хрупкости характеризуется низкой ударной вязкостью. На других механических свойствах при комнатной температуре состояние отпускной хрупкости практически не сказывается. На рисунке схематично показано влияние температуры отпуска на ударную вязкость легированной стали, в сильной степени склонной к отпускной хрупкости. Во многих легированных сталях наблюдаются два температурных интервала отпускной…

Изменение свойств мартенситно-стареющих сталей

Характер зависимости механических свойств мартенситно-стареющих сталей от температуры отпуска такой же, как у всех дисперсионно-твердеющих сплавов: рост прочностных свойств, достижение максимума упрочнения и затем разупрочнение. По аналогии со старением можно выделить стадии упрочняющего и разупрочняющего отпуска. Упрочнение вызвано образованием сегрегаций на дислокациях и, главное, частично когерентных выделений промежуточных фаз типа Ni3Ti и Ni3Mo. Разупрочнение связано,…

Влияние легирующих элементов

Диффузионная подвижность атомов легирующих элементов, растворенных в α-железе по способу замещения, на много порядков ниже, чем диффузионная подвижность атомов углерода, который растворен в железе по способу внедрения. При температурах отпуска ниже примерно 450 °С в матрице не происходит диффузионного перераспределения легирующих элементов: из α-раствора выделяются карбиды железа, в которых концентрация легирующих элементов такая же, как…

Отпуск мартенситностареющих сталей

Мартенситностареющие стали — это безуглеродистые сплавы на базе системы Fe — Ni, легированные дополнительно кобальтом, молибденом, титаном и другими элементами. Типичный пример — сплав железа с 17 — 19% Ni, 7 — 9% Со, 4,5 — 5% Мо и 0,6 — 0,9% Ti (Н18К9М5Т). Сплавы этого типа после воздушной закалки на мартенсит подвергают отпуску при…