Возврат и рекристаллизация

Возврат и рекристаллизация в α-фазе происходят в широком интервале температур отпуска. Развитие этих процессов сдерживается частицами карбидных выделений, закрепляющих отдельные дислокации, дислокационные стенки и высокоугловые границы. Закрепление слабее выражено в малоуглеродистых сталях, где соответствующие процессы изучены подробнее.

Нижнюю температурную границу возврата при отпуске трудно указать. Изменения дислокационной структуры α-фазы, отчетливо различимые при электронно-микроскопическом анализе, начинаются с температур около 400 °С.

Протяженность малоугловых границ в реечном мартенсите при температурах отпуска выше 400 °С в доли секунды резко падает. Одним из механизмов этого может быть «рассыпание» дислокационных стенок, о котором упоминалось при рассмотрении коалесценции субзерен во время отжига холоднодеформированного металла (смотрите Изменение структуры при дорекристаллизационном отжиге).

В первые моменты отпуска карбидные выделения еще малочисленны и поэтому не являются эффективными стопорами для малоугловых границ и отдельных дислокаций. Затем выделение большого числа карбидных частиц стабилизирует структуру матрицы. Вытянутость реек α-фазы в малоуглеродистых сталях сохраняется до высоких температур отпуска.

На отдельных стадиях высокотемпературного отпуска полигонизационная перестройка дислокационной структуры приводит к образованию малоугловых границ. Формирование центров рекристаллизации α-фазы и развитие их в рекристаллизованные зерна, подобно тому, как это происходит при первичной рекристаллизации холоднодеформированного металла, при отпуске сталей не наблюдались, несмотря на высокую плотность дислокаций в мартенсите.

После достаточно длительного отпуска при высоких температурах, когда в результате коагуляции цементитных частиц закрепление границ ослабевает, происходит рост зерен миграцией исходных высокоугловых границ. Микроструктура при этом теряет характерные морфологические признаки реечного мартенсита.

В высокоуглеродистых сталях из-за сильного торможения миграции границ частицами цементита рекристаллизационный рост зерен α-фазы идет еще труднее и «игольчатый» характер структуры сохраняется до температур отпуска около 650 °С.

Из сказанного видно, что при отпуске закаленной углеродистой стали протекают разнообразные процессы, которые по времени и температурному интервалу своего развития накладываются один на другой.

Все указанные выше температурные границы структурных изменений разного типа весьма условны. Они снижаются при увеличении продолжительности отпуска и смещаются вверх или вниз с изменением содержания углерода в стали.

Традиционно принято выделять три температурных интервала и соответствующие им три «превращения» при отпуске углеродистых сталей. Это подразделение, основанием для которого в свое время послужил анализ объемных изменений при отпуске, весьма условно, но как первое приближение его можно принять.

Первое «превращение» при отпуске относят к интервалу температур 100 — 200 °С. При этих температурах закаленный образец укорачивается. Так как из всех структурных составляющих стали наибольший удельный объем у мартенсита, то первое «превращение» связывают с его распадом.

Второе «превращение» при отпуске относят к интервалу температур 200 — 300 °С. При выдержке в этом интервале длина закаленных образцов средне- и высокоуглеродистых сталей увеличивается и тем больше, чем выше содержание углерода в стали.

Так как удельный объем аустенита наименьший и количество остаточного аустенита растет с увеличением содержания углерода в стали, то второе «превращение» связывают с его распадом. При этом, конечно, следует иметь в виду, что в температурном интервале второго «превращения» продолжается распад мартенсита.

Третье «превращение» при отпуске относят к интервалу температур 300 — 400 °С. В этом интервале температур сокращается длина образцов. Расчеты указывают на связь соответствующего объемного эффекта с заменой промежуточного карбида цементитом.

Структуру, получающуюся после отпуска стали при температурах ниже 300 °С, называют отпущенным мартенситом. Под микроскопом он отличается от мартенсита закалки большей травимостью из-за выделений карбидов. После отпуска при температурах 300 — 450 °С обнаруживается особенно сильно травящаяся игольчатая структура, которую называют трооститом отпуска.

В интервале температур 450 — 650 °С получается сорбит отпуска. Его двухфазное строение отчетливо выявляется при больших увеличениях светового микроскопа. Высокие температуры отпуска приводят к потере игольчатого вида сорбита, который приобретает явно точечное строение.

«Теория термической обработки металлов»,
И.И.Новиков

Изменение свойств легированных сталей

Легирующие элементы, затрудняющие распад мартенсита и коагуляцию карбидов (смотрите Структурные изменения при отпуске сталей), смещают температурную границу начала интенсивного разупрочнения при отпуске с 200 — 300 до 450 — 550 °С. Повышение красностойкости закаленной стали, т. е. способности ее сопротивляться смягчению при нагревании, — одна из основных целей легирования в производстве инструмента. Для конструкционных легированных…

Отпускная хрупкость

Отпускная хрупкость присуща многим сталям. Сталь в состоянии отпускной хрупкости характеризуется низкой ударной вязкостью. На других механических свойствах при комнатной температуре состояние отпускной хрупкости практически не сказывается. На рисунке схематично показано влияние температуры отпуска на ударную вязкость легированной стали, в сильной степени склонной к отпускной хрупкости. Во многих легированных сталях наблюдаются два температурных интервала отпускной…

Изменение свойств мартенситно-стареющих сталей

Характер зависимости механических свойств мартенситно-стареющих сталей от температуры отпуска такой же, как у всех дисперсионно-твердеющих сплавов: рост прочностных свойств, достижение максимума упрочнения и затем разупрочнение. По аналогии со старением можно выделить стадии упрочняющего и разупрочняющего отпуска. Упрочнение вызвано образованием сегрегаций на дислокациях и, главное, частично когерентных выделений промежуточных фаз типа Ni3Ti и Ni3Mo. Разупрочнение связано,…

Влияние легирующих элементов

Диффузионная подвижность атомов легирующих элементов, растворенных в α-железе по способу замещения, на много порядков ниже, чем диффузионная подвижность атомов углерода, который растворен в железе по способу внедрения. При температурах отпуска ниже примерно 450 °С в матрице не происходит диффузионного перераспределения легирующих элементов: из α-раствора выделяются карбиды железа, в которых концентрация легирующих элементов такая же, как…

Отпуск мартенситностареющих сталей

Мартенситностареющие стали — это безуглеродистые сплавы на базе системы Fe — Ni, легированные дополнительно кобальтом, молибденом, титаном и другими элементами. Типичный пример — сплав железа с 17 — 19% Ni, 7 — 9% Со, 4,5 — 5% Мо и 0,6 — 0,9% Ti (Н18К9М5Т). Сплавы этого типа после воздушной закалки на мартенсит подвергают отпуску при…