Образование цементита

Образование цементита Fe3C со структурой, одинаковой или близкой к структуре цементита отожженной стали, происходит при температурах выше 250 °С, причем наиболее активно в интервале 300 — 400 °С.

Цементит Fe3C — более стабильная фаза, обладающая меньшей объемной («химической») свободной энергией, чем любой из промежуточных карбидов. Кроме того, при повышении температуры отпуска снижение концентрации углерода в распадающемся α-растворе так изменяет межплоскостные расстояния, что решетка α-фазы лучше сопрягается уже не с решеткой ε-карбида (или карбида), а с решеткой цементита.

Таким образом, при более высоких температурах отпуска выигрыш в объемной и поверхностной свободной энергии делает предпочтительными зарождение и рост цементита Fe3C, а не промежуточных карбидов.

Установлены два механизма зарождения цементита. Во-первых, цементит выделяется прямо из пересыщенного α-раствора, причем рост частиц Fe3C сопровождается растворением выделений ранее образовавшегося менее стабильного карбида (смотрите Образование промежуточных метастабильных фаз).

Во-вторых, цементит образуется перестройкой решетки промежуточного карбида в решетку Fe3C (в пределах объема частиц промежуточного карбида). Имеются экспериментальные данные, которые можно трактовать как доказательство аллотропического превращения ε-карбида, «низкотемпературного» цементита и карбида в «высокотемпературный» цементит Fe3C.

Коагуляция и сфероидизация цементита
— завершающая стадия процессов карбидообразования при отпуске. При сравнительно низких температурах цементит растет в виде дисперсных пластин, полукогерентных матрице. Размер цементитных пластин различен. Концентрация углерода в α-растворе около относительно мелких частиц выше, чем около более крупных (смотрите формулу).

Эта разность концентраций обеспечивает диффузию углерода в α-растворе от более мелких цементитных частиц к более крупным. В результате выравнивающей диффузии α-раствор становится ненасыщенным около мелких частиц и пересыщенным около крупных. Более мелкие цементитные частицы растворяются, а более крупные подрастают.

То, что крупные частицы растут за счет растворения мелких, наглядно подтверждается частотными кривыми распределения цементитных частиц по размерам при изотермическом отпуске: по мере коагуляции уменьшается число частиц малого размера.


Распределение цементитных частиц

Распределение цементитных частиц

Распределение цементитных частиц по размерам при отпуске стали
с 0,4% С при 630 °С (С. 3. Бокштейн). Выдержка:
1 — 10 мин; 2 — 4 ч; 3 — 25 ч.


Цементит выделяется из α-раствора на крупных частицах вдали от их вершин и ребер, и форма крупной частицы приближается к сферической. Таким образом переносом вещества через раствор осуществляются коагуляция и сфероидизация цементита при отпуске стали. Ниже 350 °С эти процессы развиты очень слабо. По настоящему интенсивная коагуляция и сфероидизация начинаются с 350 — 400 °С.

Выше 550 °С частицы цементита становятся сферическими. При изотермической выдержке коагуляция цементита интенсивно развивается в течение короткого времени (первого часа) и затем затухает. Средний размер цементитных частиц растет с повышением температуры отпуска.

«Теория термической обработки металлов»,
И.И.Новиков

Изменение свойств мартенситно-стареющих сталей

Характер зависимости механических свойств мартенситно-стареющих сталей от температуры отпуска такой же, как у всех дисперсионно-твердеющих сплавов: рост прочностных свойств, достижение максимума упрочнения и затем разупрочнение. По аналогии со старением можно выделить стадии упрочняющего и разупрочняющего отпуска. Упрочнение вызвано образованием сегрегаций на дислокациях и, главное, частично когерентных выделений промежуточных фаз типа Ni3Ti и Ni3Mo. Разупрочнение связано,…

Изменение свойств легированных сталей

Легирующие элементы, затрудняющие распад мартенсита и коагуляцию карбидов (смотрите Структурные изменения при отпуске сталей), смещают температурную границу начала интенсивного разупрочнения при отпуске с 200 — 300 до 450 — 550 °С. Повышение красностойкости закаленной стали, т. е. способности ее сопротивляться смягчению при нагревании, — одна из основных целей легирования в производстве инструмента. Для конструкционных легированных…

Отпускная хрупкость

Отпускная хрупкость присуща многим сталям. Сталь в состоянии отпускной хрупкости характеризуется низкой ударной вязкостью. На других механических свойствах при комнатной температуре состояние отпускной хрупкости практически не сказывается. На рисунке схематично показано влияние температуры отпуска на ударную вязкость легированной стали, в сильной степени склонной к отпускной хрупкости. Во многих легированных сталях наблюдаются два температурных интервала отпускной…

Влияние легирующих элементов

Диффузионная подвижность атомов легирующих элементов, растворенных в α-железе по способу замещения, на много порядков ниже, чем диффузионная подвижность атомов углерода, который растворен в железе по способу внедрения. При температурах отпуска ниже примерно 450 °С в матрице не происходит диффузионного перераспределения легирующих элементов: из α-раствора выделяются карбиды железа, в которых концентрация легирующих элементов такая же, как…

Отпуск мартенситностареющих сталей

Мартенситностареющие стали — это безуглеродистые сплавы на базе системы Fe — Ni, легированные дополнительно кобальтом, молибденом, титаном и другими элементами. Типичный пример — сплав железа с 17 — 19% Ni, 7 — 9% Со, 4,5 — 5% Мо и 0,6 — 0,9% Ti (Н18К9М5Т). Сплавы этого типа после воздушной закалки на мартенсит подвергают отпуску при…