Графитизирующий отжиг

Графитизирующему отжигу подвергают белые, серые и высокопрочные (модифицированные) чугуны.

Отжиг белого чугуна на ковкий

Белый чугун тверд и очень хрупок из-за большого количества эвтектического цементита в его структуре. Современный способ получения ковкого чугуна графитизирующим отжигом белого был изобретен в начале XIX в.

В настоящее время ковкий чугун — это широко применяемый машиностроительный материал, сочетающий простоту и дешевизну получения отливки фасонных деталей с высокими механическими свойствами.

Для производства ковкого чугуна используют отливки из доэвтектического белого чугуна, содержащего 2,2 — 3,1 % С; 0,7 — 1,5% Si; 0,3 — 1,0% Mn и до 0,08% Cr. Содержание в шихте кремния, облегчающего графитизацию, и марганца с хромом, затрудняющих ее, регулируют таким образом, чтобы подавить кристаллизацию графита из расплава и обеспечить возможно более быстрое прохождение графитизации при отжиге.

Напомним, что при кристаллизации серого чугуна графит растет из расплава в неблагоприятной для механических свойств форме разветвленных крабовидных розеток, сечения которых на шлифе имеют вид изогнутых пластин.


График отжига белого чугуна на ковкий

График отжига белого чугуна на ковкий

График отжига белого чугуна на ковкий: I и II — первая
и вторая стадии графитизации.


При отжиге белого чугуна графит называемый углеродом отжига, образуется в значительно более компактной, благоприятной для механических свойств форме. Хотя ковкий чугун и не куют, но относительное удлинение у него находится в пределах 2 — 20% (в зависимости от структуры), в то время как у белого чугуна относительное удлинение не превышает 0,2%, а у серого — не более 1,2%.


Микроструктура ковкого чугуна на ферритной основе

Микроструктура ковкого чугуна на ферритной основе

Х120.


Исходный фазовый состав белого чугуна такой же, как у стали — феррит и цементит, и поэтому механизм его аустенитизации аналогичен рассмотренному в Образование аустенита при нагревании. При нагревании вначале происходит перлито-аустенитное превращение, затем растворение вторичного цементита и гомогенизации аустенита по С и Si.

Первая стадия графитизации

Во время выдержки при 900 — 4050 °С проходит первая стадия графитизации, по окончании которой весь цементит эвтектического происхождения и остатки вторичного цементита заменяются графитом и структура из аустенито-цементитной превращается в аустенитографитную.

Предположение о разложении цементита с непосредственным выделением из него графита по реакции Fe3C — 3Fe + C не согласуется со многими фактами. В частности, форма углерода отжига в ковком чугуне не соответствует форме исходных кристаллов цементита. 

Доказано, что графнтнзация белого чугуна на первой стадии состоит в зарождении графита на границе А/Ц и вдали от цементитных кристаллов и росте графита при одновременном растворении цементита в аустените путем переноса атомов углерода через аустенит от границы А/Ц к границе А/Г.

Удельный объем графита в несколько раз больше, чем у аустенита, и поэтому его гомогенное зарождение в плотной металлической матрице маловероятно — слишком велика упругая составляющая ∆Fyпp в формуле. Дислокации, субграницы и высокоугловые граниты мало эффективны в качестве мест гетерогенного зарождения графита из-за большой величины ∆Fyпp.

Как известно, серое олово, удельный объем которого на одну четверть больше, чем у белого, зарождается предпочтительно на открытой поверхности образца белого олова. Естественно, что при графитизации, когда удельный объем новой фазы еще более резко отличается от удельного объема исходной фазы, зародыши также преимущественно возникают на свободной поверхности аустенита.

В объеме отливки местами гетерогенного зарождения графита служат несплошности, скопления вакансий, усадочные и газовые микропустоты, микротрещины, разрывы на границе аустенита с неметаллическими включениями из-за разности их термического расширения. Местами зарождения графита могут быть диффузионные поры, возникающие при гомогенизации аустенита.

Например, при выравнивании состава аустенита после ухода атомов кремния из обогащенных им участков остается избыток вакансий, образующих поры. Этим предположительно можно объяснить ускорение графитизации под действием кремния, которое происходит, несмотря на то, что кремний замедляет диффузию углерода в аустените.

После образования центров графитизации в аустените существует градиент концентрации углерода, так какпредельная растворимость цементита в нем выше, чем графита (на диаграмме состояния рисунка Диаграмма состояния Fe — С линия ES находится правее линии E´S´). Например, если первая стадия графитизации проходит при температуре t*, то состав аустенита на границе с цементитом изображается точкой b, на границе с графитом — точкой а.


Участок диаграммы

Участок диаграммы

Участок диаграммы состояния Fe — С со сплошными линиями
стабильного и пунктирными линиями метастабильного
равновесия (схема).


Выравнивание концентрации углерода в аустените делает его ненасыщенным по отношению к цементиту (на границе А/Ц состав аустенита сдви гается влево от точки b) и пересыщенным по отношению к графи ту (на границе А/Г состав сдвигается вправо от точки a). В результате непрерывно, вплоть до исчезновения, растворяется цементит и растет графит.

Кроме переноса атомов углерода через твердый раствор, для графитизации необходим еще один процесс — эвакуация атомов железа от поверхности растущего графита, чтобы освободить графиту «жизненное» пространство. К. П. Бунин доказывает, что именно этот диффузионный процесс, а не приток атомов углерода, контролирует скорость роста графитных включений в аустените, так как диффузионная подвижность атомов железа намного меньше, чем у углерода.

Форма графита зависит от температуры отжига и состава чугуна. Углерод отжига быстрее разрастается вдоль высокоугловых границ и субграниц, так как по ним быстрее отводятся атомы железа. Такое нежелательное разветвление графита усиливается с ростом температуры и после отжига при температурах выше 1050 — 1070 °С механические свойства чугуна оказываются очень низкими. Этим определяется верхняя температурная граница первой стадии графитизации.

Добавки и примеси оказывают сложное влияние на рост углерода отжига, изменяя скорости диффузии железа и углерода и другие параметры. Например, малые добавки магния ( ~0,1%) обеспечивают рост углерода отжига в компактной форме. Регулируя температуру отжига и состав белого чугуна, можно получать ковкий чугун с весьма компактными включениями углерода отжига.

При охлаждении чугуна после окончания первой стадии графитизации состав аустенита изменяется по линии ES и из него выделяется вторичный графит. Эту стадию графитизации называют промежуточной. Вторичный графит наслаивается на включения углерода отжига и обычно самостоятельной структурной составляющей не дает.

«Теория термической обработки металлов»,
И.И.Новиков

Отжиг для устранения отбела

В тонких сечениях отливок из серого чугуна и высокопрочного чугуна с шаровидным графитом из-за ускоренного охлаждения кристаллизуется ледебурит, т. е. чугун получается белым. При литье в кокиль вся поверхность может получиться отбеленной. Для улучшения обрабатываемости резанием и повышения пластичности проводят графитизирующий отжиг, устраняющий отбел отливок. Так как серый и высокопрочный чугуны содержат больше кремния, чем…

Нормализация чугунов

Упрочняющая термическая обработка серого чугуна не получила такого широкого распространения, как термообработка стали. Это объясняется тем, что пластинчатый графит, действуя как внутренние надрезы, сильно снижает прочность и пластичность металлической основы. Поэтому изменение ее строения при термической обработке не дает большого эффекта упрочнения и часто нерентабельно. Эффективнее термообработка серых чугунов с более благоприятной формой графита, в…

Вторая стадия графитизации

Металлическая матрица ковкого чугуна формируется при эвтектоидном распаде аустенита. Для получения чисто ферритной матрицы охлаждение в интервале температур эвтектоидного распада должно быть медленным (смотрите рисунок График отжига белого чугуна на ковкий). Здесь проходит вторая стадия графитизации — аустенит распадается по схеме А → Ф + Г.  Диаграмма изотермических превращений аустенита Диаграмма изотермических превращений аустенита в…