Отжиг сталей

Образование аустенита при нагревании

Механизм и кинетика аустенитизации

Перед отжигом углеродистых сталей исходной структурой чаще всего является ферритокарбидная смесь.

Из диаграммы состояния Fe — С видно, что основное превращение при нагревании — это переход перлита в аустенит при температурах выше точки A1 (727 °С).


Диаграмма состояния Fe — С

Диаграмма состояния Fe — С


Переход перлита в аустенит, его кинетика подчиняются основным закономерностям фазовых превращений, протекающих при нагревании.

Экспериментально установлено, что зародыши аустенита возникают на границах феррита с цементитом. Начальные этапы формирования зародышей аустенита экспериментально не изучены и о них имеются лишь предположения. Превращение αо.ц.к. → γг.ц.к. в чистом железе возможно только при температурах не ниже 911 °С. Если же феррит находится в контакте с цементитом, то в соответствии с диаграммой состояния α — γ-превращение должно идти при температурах, начиная с 727 °С. Аустенит при температуре несколько выше точки А1 содержит около 0,8%С, в то время как феррит в стали содержит сотые доли процента углерода.

Каким же образом возникает участок фазы с г. ц. к. решеткой и сравнительно высоким содержанием углерода?

Большинство гипотез зарождения аустенита исходит из флуктуационных представлений, причем формально рассматриваются два крайних случая. Во-первых, можно представить, что базой для зарождения аустенита являются флуктуации концентрации. Внутри феррита вероятность образования значительного числа флуктуационных участков критического размера ничтожна, так как атомов углерода здесь очень мало. На границе феррита с цементитом между фазами идет непрерывный обмен атомами (динамическое равновесие) и в приграничном слое (феррита намного больше вероятность флуктуационного возникновения участков критического размера с концентрацией около 0,8%С.

Такие участки при любом самом малом перегреве выше точки А1 претерпевают полиморфное α — γ-превращение твердого раствора и становятся устойчивыми центрами роста аустенитных зерен. Ниже точки А1 подобные участки в феррите также могут возникать, но в устойчивые центры роста аустенита они не превращаются, так как γ-peшетка здесь термодинамически нестабильна.

Другое предположение состоит в том, что при зарождении аустенита первичны не флуктуации концентрации, а флуктуационная перестройка решетки. Внутри феррита участки с γ-решеткой флуктуационного происхождения возникают и исчезают, а на границе с цементитом при температурах выше А1 в эти участки поступает углерод из карбида и если они имеют критический размер, то становятся устойчивыми центрами роста аустенита.

«Теория термической обработки металлов»,
И.И.Новиков

Патентирование

Для получения высокопрочной канатной, пружинной и рояльной проволоки применяют изотермическую обработку, которая известна с 70-годов XIX в. и получила название патентирования. Проволоку из углеродистых сталей, содержащих от 0,45 до 0,85%С, нагревают в проходной печи до температуры на 150 — 200 °С выше Ас3, пропускают через свинцовую или соляную ванну с температурой 450 — 550 °С…

Изотермический отжиг

Малая степень переохлаждения аустенита, необходимая при отжиге, может быть получена не только при непрерывном охлаждении стали с печью. Другой путь — ступенчатое охлаждение с изотермической выдержкой в интервале перлитного превращения (смотрите рисунок Основные разновидности отжига 2-го рода доэвтектоидной стали). Такая термообработка называется изотермическим отжигом. После нагрева до температуры выше А3 сталь ускоренна охлаждают до температуры…

Нормализация

При нормализации сталь нагревают до температур на 30 — 50 °С выше линии GSE и охлаждают на воздухе (смотрите рисунок Температура нагрева сталей для отжига 2-го рода). Ускоренное по сравнению с отжигом охлаждение обусловливает несколько большее переохлаждение аустенита (смотрите рисунок Основные разновидности отжига 2-го рода доэвтектоидной стали). Поэтому при нормализации получается более тонкое строение эвтектоида…

Влияние режима сфероидизирующего отжига

Для режима сфероидизирующего отжига заэвтектоидных сталей характерен узкий температурный «интервал отжигаемости». Нижняя его граница должна находиться немного выше точки А1, чтобы образовалось большое число центров выделения карбида при последующем охлаждении. Верхняя граница не должна быть слишком высокой, так как иначе из-за растворения в аустените центров карбидного выделения при охлаждении образуется пластинчатый перлит. Так как точки…

Сфероидизирующий отжиг

Для заэвтектоидных сталей полный отжиг с нагревом выше Аст (линия ES) вообще не используют, так как при медленном охлаждении после такого нагрева образуется грубая сетка вторичного цементита, ухудшающая механические и другие свойства. К заэвтектоидным углеродистым сталям широко применяют отжиг с нагревом до 740 — 780 °С и последующим медленным охлаждением. После такого нагрева в аустените…

Влияние легирующих элементов на перлитное превращение

Легирующие элементы оказывают чрезвычайно важное для практики влияние на кинетику распада аустенита. За исключением кобальта, все широко используемые легирующие элементы, растворенные в аустените (Cr, Ni,Mn, W, Mo, V и др.), замедляют перлитное превращение, сдвигая верхнюю часть С-кривой вправо. Природа увеличения устойчивости переохлажденного аустенита под влиянием легирующих элементов довольно сложная. Если в углеродистых сталях перлитное превращение…

Разновидности отжига сталей

Основной фактор, от которого зависит микроструктура стали после отжига 2-го рода, — это степень переохлаждения аустенита. Разновидности отжига 2-го рода различаются главным образом способами охлаждения и степенью переохлаждения аустенита, а также положением температур нагрева относительно критических точек. Необходимая степень переохлаждения аустенита достигается или при непрерывном охлаждении, или при изотермической обработке. На рисунке на примере доэвтектоидной…

Превращения аустенита в доэвтектоидных и заэвтектоидных сталях

Выше рассматривалось превращение аустенита в стали эвтектоидного состава. В до- и заэвтектоидных сталях перлитному превращению должно предшествовать выделение избыточных фаз — феррита и вторичного цементита (смотрите рисунок Диаграмма состояния Fe — С). На диаграммах изотермических превращений аустенита в дои заэвтектоидных сталях должны быть нанесены линии начала образования избыточной фазы. Диаграмма изотермического распада аустенита Диаграмма изотермического…

Диффузионные превращения аустенита при охлаждении

Перлитное превращение Основное превращение, протекающее во время охлаждения при отжиге стали, — это эвтектоидный распад аустенита на смесь феррита с карбидом. Кинетика эвтектоидного превращения изображается С-образными кривыми на диаграмме изотермического превращения аустенита. Диаграмма изотермического распада аустенита Диаграмма изотермического распада аустенита в эвтектоидной стали: А — устойчивый аустенит: Ап — переохлажденный аустенит; Ф — феррит; К…

Скорость роста эвтектоидной колонии и межпластиночное расстояние

Скорость роста колонии и межпластиночное расстояние (суммарная толщина пластин феррита и цементита или, что то же самое, расстояние между серединами ближайших одноименных пластин) постоянны при данной степени переохлаждения аустенита. Зинер предположил, что толщина пластин зависит от следующих факторов: чем тоньше пластины обеих фаз, тем меньше пути диффузии углерода на фронте превращения и тем быстрее совершается…

Перлитное превращение в эвтектоидной стали

Весьма условное подразделение перлитных структур на собственно перлит, сорбит и троостит, хотя и устарело, но продолжает использоваться, особенно в практике термической обработки стали. Перлитное превращение в эвтектоидной стали протекает при диффузионном распаде аустенита в интервале от А1 до температур вблизи изгиба («носа») С-кривой (смотрите рисунок Диаграмма изотермического распада аустенита). Ниже изгиба С-кривой в интервале примерно…

Наследственно крупнозернистая сталь

В наследственно крупнозернистой стали зерно интенсивно растет при относительно небольших превышениях температуры над точкой Ac3. В наследственно мелкозернистой стали мелкое аустенитное зерно получается в широком диапазоне температур: от точки Ac3 до 960 — 1100 °С. Переход через этот температурный порог приводит к перегреву наследственно мелкозернистой стали. Под перегревом здесь подразумевается интенсивное укрупнение зерна и связанное…