Аустенит

Аустенит в отличие от перлита (механической смеси железа — феррита с пластин ками цементита) является однородным твердым рэствором углерода в железе.

При нагреве зерна структурных составляющих превращаются в зерна аустенита+феррит в доэвтектоидных сталях и аустенитаfцементит в заэвтектоидных, а при переходе верхних критических точек Ас, лежащих по линии GSE, все зерна превращаются в аустенит.

Естественно, что при охлаждении углеродистой стали, находящейся в аустенитном состоянии (в области AGSE), идет обратный процесс — часть аустенитных зерен превращается в зерна перлита. Для эвтектоидной стали критические точки ACl и Ас, совпадают и находятся на уровне 723° С, являющемся самой низкой температурой структурных превращений для сплавов железо — углерод.

Линия АЕ соответствует температурам начала плавления сталей, началу перехода твердого раствора — аустенита в жидкое состояние при нагревании металла и соответственно концу затвердевания при охлаждении. Линия АС соответствует температурам полного расплавления твердого раствора при нагревании и началу кристаллизации при охлаждении жидкой стали.

Наклонное расположение линий АЕ и АС означает, что по мере увеличения процента содержания углерода в стали снижается температура начала и конца плавления твердого раствора при нагреве или температура начала и конца кристаллизации при охлаждении. Пользуясь диаграммой состояния железоуглеродистых сплавов, можно легко ориентироваться в характере структурных изменений, происходящих при нагреве или охлаждении.

Часть диаграммы состояния сплавов железо—углерод, относящаяся к стали  Гнк — температура начала ковки,

Ткк — то же, конца ковки.

Для примера рассмотрим сталь 30. Изменения в структуре стали представляются на диаграмме вертикальной штриховой линией, восстановленной из точки 0,3 на оси абсцисс (точка а) и продленной до пересечения с линией АС.

При температурах до 723° С (точка б) сталь состоит из феррита и перлита, при повышении температуры выше 723° С начнутся превращения перлита в аустенит и в интервале температур 723—830° С структура стали будет состоять из аустенита+феррит.

В точке в, лежащей на линии GSE, при температуре 830° С превращение перлита в аустенит закончится полностью, и при дальнейшем нагревании структура стали будет состоять только из зерен аустенита. В точке г, лежащей на линии АЕ и соответствующей температуре 1480° С, начинается плавление, а в точке д сталь полностью переходит в жидкое состояние.

Та же сталь 30 (жидкая) при медленном охлаждении претерпевает следующие превращения: в точке д начинается, а в точке г заканчивается затвердевание; далее до точки в идет охлаждение твердого раствора аустенита; в точке в начинается и в точке б (на линии PSK) заканчивается выделение феррита; остаток аустенита в точке б превращается в перлит. При дальнейшем охлаждении сталь приобретает исходную структуру феррит+перлит.

Заштрихованная часть диаграммы состояния  помогает правильно выбрать интервалы ковки — верхний предел температуры нагрева заготовки перед ковкой, а также установить нижний предел температуры ковки, при котором рекомендуется прекратить ее.

«Свободная ковка», Я.С. Вишневецкий

Продолжительность нагрева и форма заготовки

Форма заготовок тоже влияет на продолжительность нагрева. При равных объемах круглая заготовка нагревается быстрее прямоугольной или квадратной, так как у первой заготовки поверхность, воспринимающая тепло, больше. От того, как размещены заготовки на поду печи, время их нагрева также меняется. Если заготовки прямоугольного сечения уложены плотно одна к другой, то их поверхность, воспринимающая тепло, уменьшается, так…

Время нагрева заготовок большого сечения

Время нагрева заготовок большого сечения и слитков наиболее удобно и с достаточной точностью может быть определено по формуле Н. Н. Доброхотова T=αKd√-dr где Т — полное время нагрева, в ч; а — коэффициент, учитывающий расположение заготовок на поду печи; d — диаметр или толщина заготовки (слитка) в м; К — опытный коэффициент, равный 10 для…

Влияние характера пламени на качество нагрева металла

В зависимости от условий сжигания топлива в печи может быть образована окислительная, нейтральная или восстановительная атмосфера. Взаимодействие печной атмосферы с металлом нагреваемой заготовки происходит при высокой температуре и представляет собой сложный физикохимический процесс. Окисление металла. При окислительном пламени, полученном в результате сжигания топлива с избытком воздуха, свободный, не использованный для горения кислород, соединяясь с железом,…

Обезуглероживание металла

При нагреве металла под ковку, а также при термической обработке вместе с процессом окисления при высокой температуре происходит выгорание углерода (обезуглероживание) из поверхностного слоя заготовки. Сущность этого явления заключается в том, что от воздействия газов, входящих в состав окислительной печной атмосферы, под слоем окалины на поверхности металла выгорает часть углерода. Глубина обезуглероженного слоя обычно достигает…

Пережог

Продолжительное пребывание металла в печи при температурах, близких к началу плавления, приводит к оплавлению легкоплавких примесей, находящихся по границам зерен. При этом проникший в межзеренные прослойки кислород образует окисленные соединения примесей и металла, которые разобщают зерна друг от друга. Происходит так называемый пережог металла, при котором связь между отдельными зернами нарушается и появляются глубокие трещины….