Медные сплавы

Значительное место в промышленном производстве находят сплавы на медной основе с добавлением таких элементов, как цинк, кремний, марганец, алюминий, олово, железо, свинец и др. В зависимости от компонентов, входящих в состав, медные сплавы разделяются на латуни и бронзы.

Алюминиевые сплавы (ГОСТ 4784 — 65). В состав алюминиевых сплавов, помимо основного компонента (алюминия), входят: медь, кремний, магний, марганец и другие элементы, значительно повышающие механические свойства сплава.

Сочетание высоких механических свойств с небольшой плотностью является характерной особенностью алюминиевых сплавов. Удельная прочность алюминиевых сплавов превышает прочность углеродистых сталей (в сопоставлении плотностей стали — 7,85 г/см3 [7,85103 кг/м3] и алюминиевого сплава — 2,8 г/см3 [2,8 103 кг/м3]. Алюминиевые сплавы обладают высокой пластичностью, коррозионной стойкостью и хорошей обрабатываемостью резанием и давлением.

Магниевые сплавы находят все большее применение в технике и современном машиностроении как конструкционные материалы. Небольшая плотность 1,8 г/см3 (1,8103 кг/м3), высокие механические свойства, допускающие большие ударные нагрузки, стойкость в отношении к щелочам, минеральным маслам и топливу, хорошая обрабатываемость выгодно отличают магниевые сплавы даже от алюминиевых. В состав магниевых сплавов входят, кроме основного элемента (магния), алюминий, кремний, марганец, церий и цинк с незначительным количеством других элементов.


«Свободная ковка», Я.С. Вишневецкий

Влияние нагрева на свойства металла

Нагрев заготовки при горячей обработке металлов давлением необходим для повышения пластичности, а следовательно, и ковкости материала. Пластичность характеризуется величиной уменьшения высоты образца до появления трещин, вязкостью при ударных нагрузках и относительным удлинением образца при разрыве. Ковкостью называется способность металла при высокой пластичности оказывать незначительное сопротивление деформированию. Пластичность и ковкость в значительной степени зависят от температуры…

Предел прочности стали сгв кГ/мм2 при нагреве

При нагреве большинства даже самых прочных углеродистых и конструкционных сталей до температуры 1000° С пластичность Марка стали Температура нагрева в °С 15 700 80 900 1000 1100 10 32,0 10,7 6,3 3,2 — — 30 48,0 12,7 8,6 5,9 4,2 2,0 40 57,0 15,9 9,4 6,6 3,8 — У9 — 17,0 11,5 7,0 5,0 2,4…

Температурные интервалы ковки и горячей штамповки

Марка стали Температура, °С Рекомендуемый интервал ковки, в °С начала ковки Конца ковки не выше не ниже 20, 25, 30, 35 1280 830 720 1250-750 АО, 45, 50 1260 850 760 1220-800 55, 60 1240 850 760 1190-800 65, 70 1220 850 770 1180-800 15Г, 20Г, ЗОГ 1250 850 750 1230-800 40Г, 50Г, 60Г, 65Г…

Роста зерен в поковке

Во избежание роста зерен в поковке ковку заканчивают при вполне определенной для каждой марки стали температуре, лежащей на линии Ткк. Таким образом, величина зерен после ковки, а следовательно, и механические свойства поковок зависят от качества исходной заготовки, температуры нагрева под ковку, степени измельчения зерен при ковке и температуры, при которой заканчивается ковка. Температура начала ковки…

Скорость, с которой можно нагревать металл

Скорость, с которой можно нагревать металл, является одним из важных элементов технологии свободной ковки, так как от нее зависит производительность, качество нагрева и качество поковок. Продолжительность нагрева, т. е. проникновение тепла (в тело) в толщу всей заготовки, зависит от теплопроводности металла, его теплоемкости, разности температур печного пространства и заготовки (так называемого перепада температуры), размеров и…