Деление прямых линий и углов

Деление прямых линий и углов может быть произведено двояким образом: на глаз и с помощью геометрического построения.

При делении прямой на две равные части поступают следующим образом. Половину данной прямой берут циркулем на глаз и откладывают эту половину от обоих концов прямой. Если концы половинок сходятся, то, значит, данная прямая разделена правильно, если нет, то ошибка (разница) делится опять пополам на глаз и прибавляется (или отнимается, смотря по надобности) ко взятой циркулем половине.

Так же поступают при делении на 3, 5 и т. д. равных частей. При делении на 4 равные части сначала делят прямую пополам, а потом — обе ее половины. При делении на 6 равных частей сначала делят прямую на 3 равные части, а затем каждую часть пополам.

Угол делят на равные части таким же образом, с той разницей, что делится на части дуга, проведенная любым радиусом из вершины данного угла и заключенная между сторонами угла. Точки деления соединяются с вершиной угла прямыми линиями.

Деление на глаз прямых линий и углов (дуг) сберегает время. Поэтому надо постоянно упражняться в таком делении.


Деление прямой линии на равные части

Деление прямой линии на равные части


Деление прямой линии построением производится так. Предположим, что данный отрезок AN требуется разделить на 5 равных-частей. Из конца прямой АВ под произвольным углом проводим прямую АС и на ней от точки А откладываем пять произвольных частей так, чтобы AD = DE = EF = FG = GH; соединяем Н с N и через точки D, Е, F и G проводим прямые, параллельные NH, которые пересекут AN в точках I, К, L, М так, что AL = IK = KL = LM = MN.

Деление углов на равные части построением выполняется тремя основными способами.

1. Данный угол ВАС разделить на 2, 4, 8 и т. д. равных частей.


Деление угла на 2, 4 и т. д. частей

Деление угла на 2, 4 и т. д. частей


Из точек D и как из центров, одинаковыми радиусами проводим дуги, которые пересекутся в F. Прямая FA разделит угол ВАС (а точка G — дугу DF) пополам.

Чтобы разделить угол или дугу на 4 равные части, надо повторить то же построение для каждой половины и т. д. Построение годится для любых углов: прямых, тупых и острых.

2. Прямой угол ВАС разделить на 3, 6, 12 и т. д. равных частей.


Деление угла на 3, 6 и 12 частей

Деление угла на 3, 6 и 12 частей


Радиусом AD из точек D и Е описываем дуги, которые пересекут дугу в точках F и G; проводим AF и AG, которые делят угол ВАС и дугу DF на 3 равные части.

Чтобы разделить угол на 6 равных частей, надо каждую треть разделить пополам и т. д. 

Всякий яругой угол, кроме прямого, может быть разделен на 3 равные части только на глаз или по транспортиру.

3. Угол, образуемый прямыми ЛВ и CD, разделить пополам при условии, что вершина угла недоступна.


Деление угла пополам, когда вершина недоступна

Деление угла пополам, когда вершина недоступна


Через произвольную точку Е на прямой CD проводим прямую EG, параллельную ЛВ из этой же точки произвольным радиусом описываем дугу GH;соединяем G и H прямой линией и проводим ее до пересечения с ЛВ в точке I; далее делим прямую HI пополам в точке М и через эту точку проводим к прямой HI перпендикуляр KL, этот перпендикуляр разделит угол, вершина которого недоступна, на 2 равные части. Иногда надо выполнить построение перехода двух полос неодинаковой ширины это надо делать с помощью закругления по дуге круга, как показано на рисунке.


Построение перехода двух полос неодинаковой ширины

Построение перехода двух полос неодинаковой ширины


Продолжаем отрезки а, с и b, d до взаимного пересечения в точках A и В и образовавшиеся углы делим пополам. Если продолжить перпендикуляр DC до пересечения с биссектрисами углов ЕАС и FBD, то полученные точки М и М1 будут центрами искомых закруглений.

Угол делят на равные части и с помощью транспортира. Если требуется, например, данный угол разделить на 7 равных частей, то находят, чему равен угол, и полученное число градусов делят на 7; результат обычно бывает неточный, так как на обыкновенные транспортиры минуты и секунды не наносятся. Необходимое исправление делается на глаз.

«Отделка комнат при ремонте»,
Н.П.Краснов

Геометрические построения

Мы уже говорили, что для исполнения некоторых видов малярных работ необходимо уметь рисовать. А умение рисовать, в свою очередь, предполагает знание правил построения геометрических фигур. Эскизы на бумаге вычерчивают при помощи треугольников, рейсшин, транспортаpa и циркуля, а на плоскости стен и потолков построения выполняются при помощи веска, линейки, деревянного циркуля и шнура. При этом надо…

Прямой угол

Прямой угол, т. е. равный 90°, образуется двумя взаимно перпендикулярными линиями. Перпендикуляр строится следующим образом. Опустить перпендикуляр. Из данной точки С (лежащей вне прямой), как из центра, произвольным радиусом описываем дугу так, чтобы она пересекла данную прямую в двух точках D и Е из этих точек, как из центров, одинаковыми радиусами описываем дуги, чтобы они…

Построение угла, равного данному и параллельные линии

Построение угла, равного данному Угол, равный данному, строится следующим образом. Из вершины А данного угла произвольным радиусом проводим дугу тем же радиусом из точки D на данной прямой описываем дугу EF; величину дуги ВС откладываем по дуге EF до точки F и проводим DE. Угол EDF — искомый. Построение угла, равного данному Параллельные линии Линии,…

Правильные многоугольники

Маляру часто приходится иметь дело с правильными многоугольниками, а также треугольниками и четырехугольниками, т. е. такими фигурами, у которых все стороны и, соответственно, углы равны между собой. Может встретиться необходимость построить правильный многоугольник по данной стороне, или вписать правильный многоугольник в окружность данного радиуса, или описать его вокруг окружности. Первый вопрос сводится к нахождению внутреннего…

Построение правильного пятиугольника

Первый способ — по данной стороне S с помощью транспортира. Проводим прямую и откладываем на ней AB = S; принимаем эту линию за радиус и этим радиусом из точек A и В описываем дуги: далее с помощью транспортира строим в этих точках углы в 108°, стороны которых пересекутся с дугами в точках С и D;…